Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 275: 126106, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38648687

RESUMO

Recent advances have significantly enhanced the use of smartphone devices for medical diagnostics. This study uses high-resolution cameras in mobile devices to capture and process bioassay images, enabling the quantification of diverse biomarkers across a range of diagnostic tests conducted on 96-well microplates. The study evaluates the effectiveness of this technology through protein quantification techniques and immunoassays that generate colorimetric responses at specific wavelengths. It includes the assessment of bicinchoninic acid and Bradford protein quantification methods, alongside a conventional immunoassay for detecting mare antibodies in colostrum to monitor foal immunodeficiencies. Further application involves the readout of magneto-actuated immunoassays aimed at quantifying bacteria. The results obtained from benchtop spectrophotometry at 595, 562, and 450 nm are compared with those acquired using a smartphone, which identified color intensities in shades of blue, purple, and yellow. This comparison yields promising correlations for the samples tested, suggesting a high degree of accuracy in the smartphone capability to analyze bioassay outcomes. The analysis via smartphone is facilitated by a specific app, which processes the images captured by the phone camera to quantify color intensities corresponding to different biomarker concentrations. Detection limits of 12.3 and 22.8 µg mL-1 for the bicinchoninic acid assay and 36.7 and 45.4 µg mL-1 for the Bradford are obtained for protein quantification using the spectrophotometer and the smartphone app, respectively. For mare's antibodies in colostrum, the values are 1.14 and 1.72 ng mL-1, while the detection of E. coli is performed at 2.0 x 104 and 2.9 × 104 CFU mL-1, respectively. This approach offers further advantages, including wide availability, cost-effectiveness, portability, compared to traditional and expensive benchtop instruments.

2.
Mikrochim Acta ; 191(2): 82, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191940

RESUMO

A novel approach is presented that combines filtration and the direct immunomagnetic separation of the retained bacteria Legionella in filters, for further electrochemical immunosensing. This strategy allows for the separation and preconcentration of the water-borne pathogen from high-volume samples, up to 1000 mL. The limit of detection of the electrochemical immunosensor resulted in 100 CFU mL-1 and improved up to 0.1 CFU mL-1 when the preconcentration strategy was applied in 1 L of sample (103-fold improvement). Remarkably, the immunosensor achieves the limit of detection in less than 2.5 h and simplified the analytical procedure. This represents the lowest concentration reported to date for electrochemical immunosensing of Legionella cells without the need for pre-enrichment or DNA amplification. Furthermore, the study successfully demonstrates the extraction of bacteria retained on different filtering materials using immunomagnetic separation, highlighting the high efficiency of the magnetic particles to pull out the bacteria directly from solid materials. This promising feature expands the applicability of the method beyond water systems for detecting bacteria retained in air filters of air conditioning units by directly performing the immunomagnetic separation in the filters.


Assuntos
Técnicas Biossensoriais , Legionella , Separação Imunomagnética , Imunoensaio , Bactérias , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...